Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 254: 121420, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38492478

ABSTRACT

Global warming is leading to extended stratification in deep lakes, which may exacerbate phosphorus (P) limitation in the upper waters. Conversion of labile dissolved organic P (DOP) is a possible adaptive strategy to maintain primary production. To test this, the spatiotemporal distributions of various soluble P fractions and phosphomonesterase (PME)/phosphodiesterase (PDE) activities were investigated in Lake Fuxian during the stratification period and the transition capacity of organic P and its impact on primary productivity were evaluated. The results indicated that the DOP concentration (mean 0.20 ± 0.05 µmol L-1) was significantly higher than that of dissolved inorganic P (DIP) (mean 0.08 ± 0.03 µmol L-1) in the epilimnion and metalimnion, which were predominantly composed of orthophosphate monoester (monoester-P) and orthophosphate diesters (diester-P). The low ratio of diester-P / monoester-P and high activities of PME and PDE indicate DOP mineralization in the epilimnion and metalimnion. We detected a DIP threshold of approximately 0.19 µmol L-1, corresponding to the highest total PME activity in the lake. Meta-analysis further demonstrated that DIP thresholds of PME activities were prevalent in oligotrophic (0.19 µmol L-1) and mesotrophic (0.74 µmol L-1) inland waters. In contrast to the phosphate-sensitive phosphatase PME, dissolved PDE was expressed independent of phosphate availability and its activity invariably correlated with chlorophyll a, suggesting the involvement of phytoplankton in DOP utilization. This study provides important field evidence for the DOP transformation processes and the strategy for maintaining primary productivity in P-deficient scenarios, which contributes to the understanding of P cycles and the mechanisms of system adaptation to future long-term P limitations in stratified waters.


Subject(s)
Lakes , Phosphorus , Chlorophyll A , Phosphates , Phytoplankton
2.
Water Res ; 250: 121034, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38157602

ABSTRACT

Remote sensing monitoring of particulate organic carbon (POC) concentration is essential for understanding phytoplankton productivity, carbon storage, and water quality in global lakes. Some algorithms have been proposed, but only for regional eutrophic lakes. Based on in-situ data (N = 1269) in 49 lakes across China, we developed a blended POC algorithm by distinguishing Type-I and Type-II waters. Compared to Type-I, Type-II waters had higher reflectance peak around 560 nm (>0.0125 sr-1) and mean POC (4.65 ± 4.11 vs. 2.66 ± 3.37 mg/L). Furthermore, because POC was highly related to algal production (r = 0.85), a three-band index (R2 = 0.65) and the phytoplankton fluorescence peak height (R2 = 0.63) were adopted to estimate POC in Type-I and Type-II waters, respectively. The novel algorithm got a mean absolute percent difference (MAPD) of 35.93 % and outperformed three state-of-the-art formulas with MAPD values of 40.56-76.42 %. Then, the novel algorithm was applied to OLCI/Sentinel-3 imagery, and we first obtained a national map of POC in 450 Chinese lakes (> 20 km2), which presented an apparent spatial pattern of "low in the west and high in the east". In brief, water classification should be considered when remotely monitoring lake POC concentration over a large area. Moreover, a process-oriented method is required when calculating water column POC storage from satellite-derived POC concentrations in type-II waters. Our results contribute substantially to advancing the dynamic observation of the lake carbon cycle using satellite data.


Subject(s)
Environmental Monitoring , Lakes , Environmental Monitoring/methods , Carbon , Water Quality , Phytoplankton , China
3.
Small ; 19(46): e2302690, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37475485

ABSTRACT

Lithium metal batteries (LMBs) are the most promising high energy density energy storage technologies for electric vehicles, military, and aerospace applications. LMBs require further improvement to operate efficiently when chronically or routinely exposed to high temperatures. Electrolyte engineering with high temperature tolerance and electrode compatibility has been essential to the development of LMBs. In this review, the primary obstacles to achieving high-temperature LMBs are first explored. Subsequently, electrolyte tailoring options, such as lithium salt optimization, solvation structure modification, and the addition of additives are reviewed in detail. In addition, the feasibility of utilizing LMBs at high temperatures has been investigated. In conclusion, this study provides insights and perspectives for future research on electrolyte design at high temperatures.

4.
RSC Adv ; 13(7): 4803-4822, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36760269

ABSTRACT

As highly efficient conversion devices, proton-exchange-membrane fuel cells (PEMFCs) can directly convert chemical energy to electrical energy with high efficiencies and lower or even zero emissions compared to combustion engines. However, the practical applications of PEMFCs have been seriously hindered by the intermediates (especially CO) poisoning of anodic Pt catalysts. Hence, how to improve the CO tolerance of the needed Pt catalysts and reveal their anti-CO poisoning mechanism are the key points to developing novel anti-toxic Pt-based electrocatalysts. To date, two main strategies have received increasing attention in improving the CO tolerance of Pt-based electrocatalysts, including alloying Pt with a second element and fabricating composites with geometry and interface engineering. Herein, we will first discuss the latest developments of Pt-based alloys and their anti-CO poisoning mechanism. Subsequently, a detailed description of Pt-based composites with enhanced CO tolerance by utilizing the synergistic effect between Pt and carriers is introduced. Finally, a brief perspective and new insights on the design of Pt-based electrocatalysts to inhibit CO poisoning in PEMFCs are also presented.

5.
Environ Pollut ; 323: 121277, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36796668

ABSTRACT

The fragile ecosystems of plateau lakes are in face of ecological risks from emerging toxic elements. Beryllium (Be) and thallium (Tl) have been considered priority control metals in recent years owing to their persistence, toxicity, and bioaccumulation. However, the toxic factors of Be and Tl are scarce and ecological risks of them in the aquatic environment were seldom investigated. Hence, this study developed a framework for calculating the potential ecological risk index (PERI) of Be and Tl in aquatic systems and used it to assess the ecological risks of Be and Tl in Lake Fuxian, a plateau lake in China. The toxicity factors of Be and Tl were calculated to be 40 and 5, respectively. In sediments of Lake Fuxian, the concentrations of Be and Tl were between 2.18 and 4.04 mg/kg and 0.72-0.94 mg/kg, respectively. The spatial distribution indicated that Be was more abundant in the eastern and southern regions, and Tl had higher concentrations near the northern and southern banks, consistent with the distribution of anthropogenic activities. The background values were calculated as 3.38 mg/kg and 0.89 mg/kg for Be and Tl, respectively. In comparison with Be, Tl was more enriched in Lake Fuxian. The increasing Tl enrichment has been attributed to anthropogenic activities (e.g., coal burning and non-ferrous metal production), especially since the 1980s. Generally, Be and Tl contamination has decreased over the past several decades, from moderate to low, since the 1980s. The ecological risk of Tl was low, whereas Be might have caused low to moderate ecological risks. In the future, the obtained toxic factors of Be and Tl in this study can be adopted in assessing the ecological risks of them in sediments. Moreover, the framework can be employed for the ecological risk assessment of other newly emerging toxic elements in the aquatic environment.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Metals, Heavy/analysis , Lakes , Ecosystem , Environmental Monitoring , Water Pollutants, Chemical/analysis , Geologic Sediments , Thallium/analysis , China , Beryllium , Risk Assessment
6.
Small ; 18(29): e2202867, 2022 07.
Article in English | MEDLINE | ID: mdl-35754302

ABSTRACT

Photothermal materials can convert renewable solar energy into thermal energy and have great potential for solar water evaporation. Copper sulfide (Cu2- x S) is an easily available and inexpensive plasmonic material with a high photothermal conversion efficiency and can be applied to solar evaporation and water purification. Monodispersed Cu7 S4 nanoparticles (NPs) and supercrystalline self-assembled superparticles are obtained via wet chemical synthesis and micelle self-assembly. The photothermal properties of the superstructures are investigated using the finite difference time domain method and laser radiation photothermography. The results show that the electromagnetic field intensity and photothermal efficiency of the self-assembly are significantly higher than those of isolated NPs, which is due to the plasmonic coupling of the NPs. The evaporation efficiency of the superstructure is significantly higher than that of isolated NPs, the metal salt ion and total organic carbon concentrations in the waterbody significantly decrease after evaporation, and the water polluted by high salt and organic dye concentrations is purified. The water quality significantly improves after the lake water from Fuxian Lake in the Yunnan-Guizhou Plateau of China is used for solar evaporation. The color changes from pale yellow to colorless and the ion and total organic carbon contents significantly decrease.


Subject(s)
Solar Energy , Water Purification , Carbon , China , Sunlight , Water Purification/methods
7.
Sci Total Environ ; 838(Pt 2): 156059, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35598672

ABSTRACT

Freshwater lakes are recognized as potential sources of greenhouse gases (GHGs) that contribute to global warming. However, the spatiotemporal patterns of GHG emissions have not been adequately quantified in large deep lakes, resulting in substantial uncertainties in the estimated GHG budgets in global lakes. In this study, the spatial and seasonal variability of diffusive GHG (CO2, CH4, and N2O) emissions from Lake Fuxian located on a plateau in Southwestern China were quantified. The results showed that the surface lake water was oversaturated with dissolved GHG concentrations, and the average concentrations were 24.25 µM CO2, 0.044 µM CH4, and 14.28 nM N2O, with diffusive emission rates of 8.82 mmol CO2 m-2 d-1, 31.94 µmol CH4 m-2 d-1, and 4.94 µmol N2O m-2 d-1, respectively. Diffusive CH4 flux exhibited high temporal and spatial variability similar to that in most lakes. In contrast, diffusive CO2 and N2O flux showed distinct seasonal variability and similar spatial patterns, emphasizing the necessity for increasing the temporal resolution in GHG flux measurements for integrated assessments. Water temperature and/or oxygen concentrations were crucial in regulating seasonal variability in GHG emissions. However, no limnological parameter was found to govern the spatial GHG patterns. The frequent advection mixing caused by wind-driven currents might be the reason for the low spatial heterogeneity in GHGs, in which the inconspicuous mechanism requires further research. It was recommended that at least 11 locations were needed for representative whole lake flux estimates at each sampling campaign. In addition, the maximum peak of CH4 in the oxycline from Lake Fuxian indicated that low CH4 oxidation occurred in oxic waters. Overall, this study suggests that, compared to other tropical and temperate lakes, this alpine deep lake is a minor CO2 and CH4 source, but a moderate N2O source, which are horizontally uniform.


Subject(s)
Greenhouse Gases , Carbon Dioxide/analysis , China , Greenhouse Gases/analysis , Lakes , Methane/analysis , Nitrous Oxide/analysis , Water
8.
Environ Sci Pollut Res Int ; 27(21): 25848-25860, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31392622

ABSTRACT

Freshwater ecosystems are recognized as one of the important natural methane (CH4) sources, but little is known about the emission hotspots and the effects of algal blooms on CH4 production in deep lakes. In this study, carried out from the littoral (S1), pelagic (S2-S4), and the deepest site (S5), water samples from different depths and sediment cores were collected along the transect of Lake Fuxian, a deep monomictic lake to investigate the spatial-temporal variations of CH4. Dissolved methane concentration observed at the oxic metalimnion was 37.5% and 19.5% higher than that those observed at the epilimnion and at the layer between 80 and 100 m depth, respectively. During the overturn period, the vertical distribution of CH4 in the water column was uniform, with an average concentration of 0.031 ± 0.007 µM in S2-S5. Statistical analysis indicated that the CH4 concentration in the water column was significantly higher in S1 than other sites along the transect during both sampling periods. Sediment CH4 concentration and methane production potential (MPP) were also significantly higher in S1 than in other sites. Along the sediment depth, the maximum MPP was observed at 6-8 cm in S1, but it moved up to the surface layer in S2-S5 in both sampling periods. In addition, stable carbon isotope analysis indicated that the surface sediments in the pelagic zone (S2-S5) mainly comprised autochthonous organic matters. In this zone, MPP had a significantly positive correlation with sediment total organic carbon (TOC) (R2 = 0.401, p < 0.01). In summary, we described the spatial and temporal distributions of CH4 in deep Lake Fuxian, littoral zones are CH4 emission hotspots that can contribute to the CH4 accumulation in the oxic metalimnion layer during the stratification period. In the pelagic zone, autochthonous organic matter was transported into the surface sediment after a massive algal bloom, representing another hotspot for CH4 production.


Subject(s)
Lakes , Methane/analysis , China , Ecosystem , Eutrophication
9.
Chemosphere ; 173: 78-88, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28110018

ABSTRACT

The PAH and OCP concentrations in sediment cores collected from a deep lake were measured and evaluated chronologically. The results indicated that the PAH and OCP concentrations significantly increased from the 1950s to the 1990s and subsequently decreased to recent years. Integrated molecular diagnostic ratios indicated that the predominant petrogenic sources occurred from the 1950s-1980s. Petroleum and fuel combustion dominated the source of contamination more recently as a result of energy structure changes in this region. Additionally, HCHs and DDTs were the dominant OCP compounds, making up a majority of the total OCPs present (>85%). HCHs accounted for a larger ratio of the OCPs between the 1950s and 1980s, suggesting that HCHs were the dominant POPs in this period. DDTs then became dominant in the 1980s and later. High α/γ-HCH ratios suggested that the emission and conversion of local technical HCHs were the predominant HCHs source. The ratios of (DDE + p,p'-DDD)/DDTs and p,p'-DDT/DDTs indicated that the DDTs mainly originated from historical input. In addition, the dramatic decrease since the 1980s may be the result of China's banning of DDTs. However, DDTs were still present in the 1990s, suggesting DDTs were still used in this region and beyond.


Subject(s)
Geologic Sediments/chemistry , Hydrocarbons, Chlorinated/analysis , Lakes/chemistry , Pesticides/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis , China , Environmental Monitoring/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...